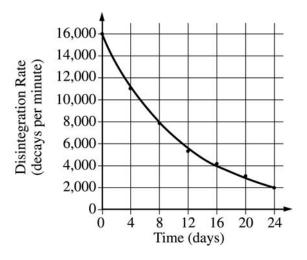
AP[®] CHEMISTRY 2003 SCORING GUIDELINES (Form B)

Question 8

Total Score 8 points

- 8. The decay of the radioisotope I-131 was studied in a laboratory. I-131 is known to decay by beta $\begin{pmatrix} 0 \\ -1 e \end{pmatrix}$ emission.
 - (a) Write a balanced nuclear equation for the decay of I-131.


$^{131}_{53}\text{I} \rightarrow ^{131}_{54}\text{Xe} + ^{0}_{-1}e$	1 point for correct equation
---	------------------------------

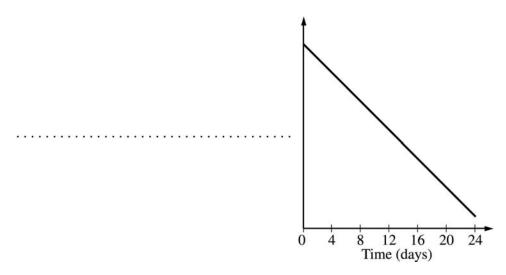
<u>Note:</u> " β " for $_{-1}^{0}e$ is acceptable

(b) What is the source of the beta particle emitted from the nucleus?

A neutron spontaneously decays to an electron and a proton.	1 point for identifying a neutron as the source of the beta emission
---	--

The radioactivity of a sample of I-131 was measured. The data collected are plotted on the graph below.

(c) Determine the half-life, $t_{1/2}$, of I-131 using the graph above.


The half-life is 8 days. That is the time required for the	
disintegration rate to fall from 16,000 to one-half its initial	1 point for half-life
value, 8,000.	

Copyright © 2003 by College Entrance Examination Board. All rights reserved. Available at apcentral.collegeboard.com.

AP[®] CHEMISTRY 2003 SCORING GUIDELINES (Form B)

Question 8 (cont'd.)

(d) The data can be used to show that the decay of I-131 is a first-order reaction, as indicated on the graph below.

(i) Label the vertical axis of the graph above.

The label on the <i>y</i> -axis should be ln or log one of the following: disintegrations or moles or atoms or [I-131] or disintegration rate.	1 point for correct label on y-axis
--	--

(ii) What are the units of the rate constant, k, for the decay reaction?

From the graph, the units on the rate constant are days ⁻¹ (Units of time ⁻¹ is acceptable)	1 point for correct units
---	---------------------------

(iii) Explain how the half-life of I-131 can be calculated using the slope of the line plotted on the graph.

The slope of the line is $-k$. The slope is negative, so k is a positive number. The half-life can then be calculated using the	1 point for indicating slope is k
relationship $t_{1/2} = \frac{0.693}{k}$.	1 point for half-life equation

(d) Compare the value of the half-life of I-131 at 25°C to its value at 50°C.

The half-life will be the same at the different temperatures. The half-life	1 point
of a nuclear decay process is independent of temperature.	i point

Copyright © 2003 by College Entrance Examination Board. All rights reserved. Available at apcentral.collegeboard.com.